ggjav

师资队伍

刘汉兵

发布人:发表时间:2017-05-09点击:

刘汉兵

Hanbing Liu

ggjav (武汉)ggjav

School of Mathematics and Physics,

China University of Geosciences (Wuhan),

Wuhan, Hubei 430074



刘汉兵,男,19858月生,湖北鄂州人,2012年毕业于罗马尼亚“Alexandru Ioan CuzaUniversity(受欧盟FP7, Marie Curie ITN项目全额资助,导师为欧洲科学院院士V. Barbu)。现任 ggjav (武汉) ggjav 副教授,硕士生导师,曾两次入选 ggjav 地大学者岗位青年优秀人才(20162017)。主要研究领域为分布参数系统的控制理论。在SICONJDEESIAM: COCVSCL等期刊发表学术论文20余篇,主持完成国家自然科学基金青年基金项目一项。正在主持国家自然科学基金面上项目,湖北省自然科学基金面上项目各一项。

办公室: 东区综合教学楼A1415

A1415, Integrated Teaching building, East Campus

Homepage:  //www.researchgate.net/profile/Hanbing-Liu

Email: [email protected]

研究方向 Research Interests

分布参数系统的控制理论,特别是最优控制和能稳性。

Control theory of parameter distributed systems, especially about the optimal control theory and stabilizability.  

教育经历 Education

2009. 102012. 07罗马尼亚Al.I.CuzaUniversity, 最优控制博士;

                 导师:Viorel Barbu教授(欧洲科学院院士)

2007. 092009. 07武汉大学,数学与统计学院应用数学专业硕士;

                 导师:汪更生教授

2003. 092007. 07,华中师范大学,数学与统计学应用数学专业,本科

工作经历 Academic Experience

2016. 01至今, ggjav (武汉),副教授;

2013. 01 -2015. 12, ggjav (武汉),讲师;

2012. 07-2012. 12, ggjav (武汉),助教;

学术兼职 Academic Service

[1] 美国数学会《Mathematical Reviews(数学评论)》评论员

        [2] 教育部学位与研究生教育发展中心学位论文评审专家

[3] SCI期刊《SIAM Journal on Control and Optimization》、《ESAIM: COCV》、《Mathematical Control and Related Fields》、《Journal of the Franklin Institute》等期刊审稿人。  

科研课题 Funded Research Projects

[1] 国家自然科学基金面上项目:“分布参数采样控制系统基于离散观测的弱能观性与输出反馈能稳性”主持2025-2028;

[2] 湖北省自然科学基金面上项目:“无穷维采样控制系统的能稳性研究”,主持2023-2026

[3] 国家自然科学基金青年基金项目: 具有状态约束的Navier-Stokes方程的最优控制问题, 主持2015-2017;

[4] 中央高校杰出人才培育基金: 带有约束的流体方程的最优控制问题主持 2014-2015.

科研论文 Publications (*为通讯作者)

[1] Hanbing Liu*, Gengsheng Wang, Huaiqiang Yu, Stabilizability of linear systems with discrete observation mode. SIAM J. Control Optim. 61  (2023), no.4, 2520 2545.

[2] Wei Ping Lu, Hanbing Liu*, Sampled-data time optimal control for heat equation with potential in R^n.  Acta Math. Sci. Ser. A, 43 (2023), no. 4, 1269–1283.

[3] Hanbing Liu, Gengsheng Wang, Yashan Xu, Huaiqiang Yu, Characterizations of complete stabilizability. SIAM J. Control Optim. 60 (2022), no. 4, 2040–2069

[4] Xiangyu Wang, Hanbing Liu*, The Maximization of the admissible sampling interval of boundary proportional sampled-data feedbacks for stabilizing parabolic equation. J. of Math (PRC), Vol. 42 ( 2022 ) No. 3.

[5] Gengsheng Wang, Hanbing Liu*, Second order optimality conditions for periodic optimal control problems governed by semilinear parabolic differential equations. ESAIM Control Optim. Calc. Var. 27 (2021), Paper No. 24, 27 pp

[6] Hanbing Liu, Wenqiang Luo, Shaohua Li, Time-periodic Fitzhugh-Nagumo equation and the optimal control problems, Chinese Annals of Mathematics, Series B, 42 (2021), no. 3, 471–486.

        [7] Shuo Han, Hanbing Liu, Ping Lin, Null controllability and global blowup controllability of ordinary differential equations with feedback controls. J. Math. Anal. Appl. 493 (2021), no. 1, 124510, 33 pp.

[8] Hanbing Liu*, Peng Hu, Boundary sampled-data feedback stabilization for parabolic equations. Systems Control Lett. 136 (2020), 104618, 8 pp.

        [9] Ping Lin, Hanbing Liu*, Wang, Gengsheng, Output feedback stabilization for heat equations with sampled-data controls. J. Differential Equations 268 (2020), no. 10, 5823–5854.

[10] Hanbing Liu*, Haijun Xiao, Boundary feedback stabilization of Boussinesq equations. Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 6, 1881–1902.

[11] Hanbing Liu, Impulse output feedback stabilization of Fisher’s equation. Systems & Control Letters, 2017, 107:17–21.

[12] Hanbing Liu*, Can Zhang,  Observability from measurable sets for a parabolic equation involving the Grushin operator and applications. Math. Methods Appl. Sci. 40 (2017), no. 10, 3821–3832.

[13] Hanbing Liu*, Peng Hu, Ionuţ Munteanu,  Boundary feedback stabilization of Fisher's equation. Systems Control Lett. 97 (2016), 55–60.

[14] Hanbing Liu, Boundary optimal feedback controller for time-periodic Stokes-Oseen flows. NoDEA Nonlinear Differential Equations Appl. 21 (2014), no. 5, 709–735.

[15] Hanbing Liu*, Juan Yang Optimal control of semilinear parabolic systems with state constraint. J. Math. Anal. Appl. 417 (2014), no. 2, 787–803.

[16] Juan Yang, Hanbing Liu*, An approximation scheme of stochastic Stokes equations. Electron. Commun. Probab. 18 (2013), no. 21, 10 pp.

[17] Hanbing Liu, Optimal control of fluid dynamic systems with state constraint of pointwise type. Nonlinear Anal. 93 (2013), 97–108.

[18] Hanbing Liu, Boundary optimal control of time-periodic Stokes-Oseen flows. J. Optim. Theory Appl. 154 (2012), no. 3, 1015–1035.

[19] Hanbing Liu, Optimal control problems with state constraint governed by magnetohydrodynamic equations. Numer. Funct. Anal. Optim. 32 (2011), no. 4, 409–435.

[20] Hanbing Liu, Optimal control problems with state constraint governed by Navier-Stokes equations. Nonlinear Anal. 73 (2010), no. 12, 3924–3939.

主讲课程  Teaching

《控制论》  数学物理方程 《线性代数》

奖励与荣誉 Honors and Awards

2023年,指导研究生胡金金等获得全国大学生统计建模大赛湖北赛区选拔赛二等奖;

2019年,获 ggjav (武汉)第十一届青年教师教学竞赛一等奖;

2016年,论文“Liu, Hanbing*; Yang, Juan, Optimal control of semilinear  parabolic systems with state constraintJ. Math. Anal. Appl. 417 (2014), no. 2, 787 803. 第十六届湖北省自然科学优秀学术论文

2016,2017年两次入选地大学者岗位青年优秀人才

2015年,指导学生田文浩获得美国大学生数学建模竞赛一等奖;